THE DECARBOXYLA TIVE DEHYDRATION OF 3-HYDROXYCARBOXYLIC ACIDS WITH DIMETHYL-FORMAMIDE-DIMETHYLACETAL - EVIDENCE FOR A ZWITTERIONIC INTERMEDIATE

Johann Mulzer * and Gisela Bruntrup
Institut für Organische Chemie der Universität, Karlstr. 23, D-8000 Munchen 2, West Germany

Summary. Dimethylformamide dimethylacetal (1) and 3-hydroxycarboxylic acids (2) react with formation of esters (4) and olefins (5). Evidence is provided that 5 is generated via an E1/E2-type fragmentation of a zwitterionic intermediate (Z).- (Scheme 1).

The decarboxylative dehydration of hydroxycarboxylic acids with dimethylformamide acetals provides a mild and efficient method for the preparation of sensitive olefins and butadienes. 'Surprisingly, no mechanistic details of this reaction have been reported so far. We studied the inieraction of dimethylformamide dimethylacetal (1) with threo-3-hydroxycarboxylic acids (2) (Scheme 1) and found that under standard conditions ${ }^{2}$ vary ing amounts of the methyl esters $\underline{4}$ are formed in competition to the olefins $\underline{5}$ (Table 1). Furthermore we gained evidence that the olefin forming step corresponds to an E1/E2-type fragmentation of a zwitterionic intermediate (Z). Mechanistic Discussion. We assume that $\underline{1}$ and $\underline{2}$ first form the ion pair $\underline{3}^{3}$ which generates $\underline{4}$ ($\mathrm{S}_{\mathrm{N}}{ }^{2}$-methyl-transfer to the carboxylate-oxygen ${ }^{3}$) or $(Z)^{4}$ (attack at the hydroxyl-oxygen). (Z), which may adopt the conformations (A) (B) or (C) undergoes fragmentation into $\underline{5}$, dimethylformamide, and CO_{2}. Intermediate $\underline{3}$ was prepared independently for system f : methylating dimethylformamide with methy! fluorosulfonate and adding the triethylammonium salt of $\underline{2 \mathrm{f}}$ furnished 4 f and 5 f in the same ratio as the reaction of $\underline{1}$ with $\underline{2 \mathrm{f}}$.

Olefin vs. Ester Formation. The kinetic analysis of Scheme 1 yields the following expressions:
$d[4] / d t=k_{e}[3]$ and $d\left[5 \cdot / d t=k_{o}[Z]=k_{0} \cdot K[3] /[\mathrm{MeOH}]\right.$, where $K=[Z][\mathrm{MeOH}] /[3]$, and $k_{0}=k_{A}[A] /[Z]+k_{B}[B] /[Z]+k_{C}[C] /[Z]$, and $[Z]=[A]+[B]+[C]$. Hence $\frac{d[5]}{d[4]}=\frac{k_{0} \cdot K}{[\mathrm{MeOH}] \cdot k_{e}}, \frac{[5]}{[4]}=r=\frac{k_{0} \cdot K}{k_{e} \cdot 1} \quad \underline{(\text { Equ. 1) }}$, with $I=\int_{0}^{\infty}[\mathrm{MeOH}] d t$.

Discussion of Equ.1 : As the step $\underline{3} \rightarrow 4$ involves the carboxylate-oxygen only, k_{e} must be practically independent of $R^{2} ; K$ and I are not likely to vary much with R^{1} and R^{2} anyhow. Therefore, at least in a series with constant $R^{1}\left(=\mathrm{Ph}\right.$) and sterically not too different R^{2} (Table 1 , runs $\left.a-j\right), r=[5] /[4]$ may be considered as an estimate of k_{0}, the rate of the fragmentation step (Z) $\boldsymbol{5}$, which - due to the complexity of the system - cannot be determined directly. Table 1 shows that r, and hence \mathbf{k}_{0}, quite in agreement with the postulated E1/E2fragmentation mechanism, is dramatically increased if R^{2} stabilizes a carbenium center well. So r is very low for $\mathrm{R}^{2}=$ alkyl (runs $a-c$) and grows from 0 to ∞ in the Hammett-sequence d-i. The validity of Equ. 1 is further demonstrated by the data given in Table 2. To dilute the reaction mixture means to decrease I, which - in accordance with Equ. 1 - leads to an increase of r (Table 2, runs a, b, c). In turn, an addition of methanol should increase 1 and decrease r . Again, this is confirmed by the experiment (Table 2, runs d, e). These results are in agreement with

a mobile equilibrium $\underline{3} \rightleftharpoons \mathrm{Z}$ and give evidence that $\underline{5}$ must be formed via an intermediate which has been generated from 3 by elimination of methanol.
The Stereochemistry of the O lefin Formation. E2-elimination and, hence, formation of (Z)- $\underline{5}$ can only occur from (A) where the two eliminatable groups are in the required anti-position. By contrast, (B) and (C)are suitable for El-elimination only and generate (E)-5, the more stable olefin isomer. In estimating the E1/E2-ratio two factors have to be considered: \underline{a}. the ratio of k_{A} vs. $\mathrm{k}_{\mathrm{B}}, \mathrm{k}_{C}$: It can be expected that the El -processes (k_{B} and k_{C}) are more accelerated by a carbenium-ion-stabilizing R^{2} than the E2-step $\left(k_{A}\right)_{2}^{5}$. Thus, for a constant $R^{1}(=P h)$ the ratio of (E)- $\underline{5}$: (Z)- $\underline{5}$ should be increased considerably on going from $R^{2}=$ alkyl to $R^{2}=$ aryl. Table 1 shows that this is actually the case (runs a, b vs. runs e to j).
b. the relative population of (A) vs. (B) + (C): R^{1} and R^{2} are syn in (A) and (B) and anti in (C). Thus, an increased repulsion between R^{1} and R^{2} should clearly favor (C), which means that E1-elimination (= formation of (E)-5) will gain more and more over E2-elimination (= formation of (Z)-5). To avoid an interference from effect a $R^{\overline{2}}$ is kept constant ($=\mathrm{Ph}$), and, indeed, with growing bulkiness of R^{-}(Table 1 , runs k to n) the ratio of (E) $-\underline{5}$: (Z)- $\underline{-}$ rises from 1:2 to $>99: 1$.

Our stereochemical results strongly disagree with the assumption ${ }^{1 a}$ that $\underline{5}$ is generated via a concerted fragmentation of 6 (Scheme 2) which could be easily formed from (2) by ring closure. In this case, however, from threo- $\underline{2}$ always (E) $-\underline{5}$ should be generated (which, according to Table 1, is not true), whereas erythro- $\underline{-}$ should furnish only (Z)- $\underline{5}$. We prepared erythro-2a, $\underline{b}, \underline{f}, \underline{k}, \underline{1}, \underline{m}, \underline{n}$ and reacted them with $\underline{1}$; in each case the olefin fraction consisted of the (E)-isomer exclusively !
Additional Evidence for the Intermediate (Z) (Scheme 3). In addition to the fragmentation A) should also be able to collapse to a β-lactone via an internal $S_{N}{ }^{2-p r o c e s s . ~ F o r ~ t h r e o-~ A ~ t h i s ~ r e a c t i o n ~ s u f f e r s ~ f r o m ~ t h e ~ c i s-i n-~}$ teraction between R^{1} and R^{2} and cannot be observed. In erythro-(A), however, R^{1} and R^{2} are trans and the B-lactone \underline{Z} is formed in addition to (E$)-\underline{5}$ and the erythro-ester. If R^{2} is a vinyl group, (Z) $=8$) undergoes an internal $S N^{2}$-reaction and lactone $\underline{\underline{q}}$ is found besides the "normal" butadiene. To exclude β-lactones as intermediates in the formation of $\underline{5}$ from $\underline{1}$ and $\underline{2}$ we converted $\underline{2 a}, \underline{b}, \underline{k}, \underline{1}, \underline{m}, \underline{n}$ into the corresponding B-lactones independently and found them absolutely stable under the conditions described in lit. 2.

Preparative Consequences. Quite in accordance with the mechanism delineated in Scheme 1 dimethylformamide dineopentylacetal ${ }^{1 b}$ converts $\underline{2}$ into the olefins and no esters are formed (e.g. in the systems $\underline{a}, \underline{b}, \underline{k}, \underline{1}, \underline{m}, \underline{n}$. This is of advantage from the synthetic point of view; for our mechanistic studies we preferred 1 due to the highly informative competition between ester and olefin formation. However, high olefin yields may be obtained even with $\underline{1}$ in many cases if diluted reaction mixtures are used (Table $2!$).

References and Notes

1. a. Hara, S., Taguchi, H., Yamamoto, H., Nozaki, H., Tetrahedron Lett. 1975, 1545.
b. Rüttimann, A., Wick, A., Eschenmoser, A., Helv. Chim. Acta 1975, 58, 1450.
c. Mulzer, J., Kühl, U., Bruntrup, G., Tetrahedron Lett. 1978, 2953.
2. $\mathrm{CHCl}_{3}, 0.05 \mathrm{M}$ solution, molar ratio of $\underline{1}: \underline{2}=1.5: 1,2 \mathrm{hrs}$ at $22^{\circ} \mathrm{C}$, product analysis by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, isolation by TLC (silicagel, ligroin/ether $3: 1$).
3. Brechbuhler, H., Buchi, H., Hatz, E., Schreiber, J., Eschenmoser, A., Helv. Chim. Acta 1965, 48, 1746. Vorbrüggen, H. , Liebigs Ann. Chem. 1974, 821.
4. An intermediate similar to (Z) has been postulated in the fragmentation of 3-bromo-carboxylic acids: Noyce, D.S., Banitt, E.H., J.Org. Chem. 1966, 31, 4043, and cited lit. See also Grob, C.A., Angew. Chem. Int.Ed.Engl. 1969, 8, 535.
5. See, for example, March, J., Advanced Organic Chemistry, 2nd ed., McGraw-Hill, N.Y., 1977, p. 914.

Table 1 Product Distributions and Total Yields in the Reaction of 1 and threo-2 .

Run	R^{1}	R^{2}	yields (\%) of $\underline{5}$ ($\underline{4}$	$r=[5]:[4]$	(E) $-\underline{5} /(\underline{Z})-\underline{5}$
a	Ph	Me	7 7 69	0.10	1/26
b	"	Et	$7 \quad 68$	0.10	1/3.7
c	"	$i-\mathrm{Pr}$	<174	~ 0.0	-
d	"	$4-\mathrm{CN}-\mathrm{C}_{6} \mathrm{H}_{4}$	<183	~ 0.0	-
e	"	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	2758	0.47	5.0/1
f	"	Ph	$58 \quad 22$	2.6	6.8/1
9	"	$4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	$85 \quad 5$	17	17/1
h	"	$4-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}$	$82<1$	$\sim \infty$	> 99/1
i	"	$4-\mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	$85<1$	$\sim \infty$	>99/1
,	"	2-furyl	$94<1$	$\sim \infty$	>99/1
k	Me	Ph	$50 \quad 31$	1.6	1/2.0
1	Et	"	$65 \quad 13$	5.0	1.5/1
m	i-Pr	"	808	10	98/2
n	$t-\mathrm{Bu}$	"	$85 \quad 4$	21	>99/1

Table 2 Influence of the Initial Concentration of $\left.\underline{2}(=(2))_{i}\right)$ and of Methanol Additions on r.

Run	R^{l}	R^{2}	$(2)_{i}$ (mole/l)	$\mathrm{CH}_{3}-\mathrm{OH}$-Addition (mole equiv.)	r
a	Ph	Ph	0.05	-	2.6
b	$"$	$"$	0.15	-	0.63
c	$"$	$"$	1.5	-	0.32
d	$"$	$"$	1.5	5	0.22
$\underline{\mathrm{e}}$	$"$	$"$	1.5	13	0.14

